Category Physics

Solar-Powered Gel Filters enough Clean Water to meet Daily Needs

Solar-powered gel filters enough clean water to meet daily needs
Researchers Néhémie Guillomaitre and Xiaohui Xu hold a sample of the solar absorber gel, which acts like a sponge to soak up clean water and filter out contaminants. Credit: Bumper DeJesus/Princeton University

Worldwide, over two billion people lack reliable access to clean water. And one potential solution for meeting that need works a lot like a sponge, soaking up clean water while leaving contaminants behind.

Researchers at Princeton University have developed the next generation of their solar absorber gel technology, a device that could be key to unlocking clean water access for people across the globe...

Read More

Deep Learning for Quantum Sensing

Scheme of the implemented deep learning protocol.
Scheme of the implemented deep learning protocol. A limited number of quantum probe states are fed into the sensor treated as a black box. A grid of measurement results is collected to train a neural network, which learns the posterior probability distribution associated with the single-measurement Bayesian update. Such distribution is used to define the reward of the RL agent that sets the control phases on the black-box device. Image credit: Cimini et al., doi 10.1117/1.AP.5.1.016005

Quantum sensing represents one of the most promising applications of quantum technologies, with the aim of using quantum resources to improve measurement sensitivity...

Read More

Nanoscale Ferroelectric Semiconductor could Power AI and Post-Moore’s Law Computing on a Phone

Nanoscale ferroelectric semiconductor could power AI and post-Moore's Law computing on a phone
a) Cross-sectional HAADF-STEM image of the 5 nm thick ScAlN grown on Mo template. (b) and (c) Nano-beam electron diffraction patterns captured from the Mo (b) and ScAlN (c) regions labeled in (a). (d) Magnified HAADF-STEM image showing the thickness of the ScAlN layer. (e) Schematic of the epitaxial relationship between wz-ScAlN and bcc-Mo. (f) EDS element maps for the ITO/ScAlN/Mo capacitor. Credit: Applied Physics Letters (2023). DOI: 10.1063/5.0136265

Ferroelectric semiconductors are contenders for bridging mainstream computing with next generation architectures, and now a team at the University of Michigan has made them just five nanometers thick—a span of just 50 or so atoms.

This paves the way for integrating ferroelectric technologies with conventional components used in ...

Read More

Entangled Atoms Cross Quantum Network from one Lab to another

Illustration mehrerer Gebäude mit einer roten Kugel im ersten Gebäude und einer grünen Kugel im letzten, dazwischen eine strichlierte Linie.
The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria.

Trapped ions are one of the leading systems to build quantum computers and other quantum technologies. To link multiple such quantum systems, interfaces are needed through which the quantum information can be transmitted. In recent years, researchers led by Tracy Northup and Ben Lanyon at the University of Innsbruck’s Department of Experimental Physics have developed a method for doing this by trapping atoms in optical cavities such that quantum information can be efficiently transferred to light particles. The light particles can then be sent through optical fibers to connect atoms at different locations...

Read More