Category Physics

Researchers to present New Tool for Enhancing AI Transparency and Accuracy at conference

SMU researchers to present new tool for enhancing AI transparency and accuracy at IEEE Conference
Clark and Buongiorno’s research explores GAME-KG’s potential across two demonstrations. The first uses the video game Dark Shadows. Credit: SMU

While large language models (LLMs) have demonstrated remarkable capabilities in extracting data and generating connected responses, there are real questions about how these artificial intelligence (AI) models reach their answers. At stake are the potential for unwanted bias or the generation of nonsensical or inaccurate “hallucinations,” both of which can lead to false data.

That’s why SMU researchers Corey Clark and Steph Buongiorno are presenting a paper at the upcoming IEEE Conference on Games, scheduled for August 5-8 in Milan, Italy...

Read More

New Transistor’s Superlative Properties could have Broad Electronics Applications

New transistor's superlative properties could have broad electronics applications
Caption: Schematic showing the crystal structure of the boron nitride key to a new ferroelectric material that MIT researchers and colleagues have used to build a transistor with superlative properties. The schematic shows how the structure can change as two ultrathin layers of boron nitride slide past each other upon application of an electric field. The P stands for polarization, or negative/positive charge. Credit: Ashoori and Jarillo-Herrero labs

In 2021, a team led by MIT physicists reported creating a new ultrathin ferroelectric material, or one where positive and negative charges separate into different layers. At the time, they noted the material’s potential for applications in computer memory and much more...

Read More

Engineers develop Magnetic Tunnel Junction–based Device to make AI more Energy Efficient

Researchers develop state-of-the-art device to make artificial intelligence more energy efficient

Engineering researchers at the University of Minnesota Twin Cities have demonstrated a state-of-the-art hardware device that could reduce energy consumption for artificial intelligent (AI) computing applications by a factor of at least 1,000.

The research is published in npj Unconventional Computing titled “Experimental demonstration of magnetic tunnel junction-based computational random-access memory.” The researchers have multiple patents on the technology used in the device.

With the growing demand for AI applications, researchers have been looking at ways to create a more energy efficient process, while keeping performance high and costs low...

Read More

A Breakthrough on the Edge: One Step Closer to Topological Quantum Computing

Researchers at the University of Cologne have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing / publication in Nature Physics.

A team of experimental physicists led by the University of Cologne have shown that it is possible to create superconducting effects in special materials known for their unique edge-only electrical properties. This discovery provides a new way to explore advanced quantum states that could be crucial for developing stable and efficient quantum computers. Their study, titled ‘Induced superconducting correlations in a quantum anomalous Hall insulator’, has been published in Nature Physics.

Superconductivity is a phenomenon where electricity ...

Read More