Scientists Discover Dual Roles of Antibodies in COVID-19 Infections

Midwest AViDD
Structure of SARS-CoV-2 Omicron spike complexed with Nanosota-5

Scientists at the University of Minnesota and the Midwest Antiviral Drug Discovery (AViDD) Center have made a surprising discovery: antibodies can have opposite effects on viral infections in human cells.

The spike protein of SARS-CoV-2, the virus that causes COVID-19, enables the virus to enter human cells and is the primary target for the body’s antibodies. Previous research has shown that antibodies can either block the virus, have no effect, or, in rare cases, assist the virus in infecting cells. While antibody drugs work to block infections, this new study challenges current understanding of their mechanisms.

Published in the journal PLOS Pathogens, this study is the first to identify an antibody that can both a...

Read More

Carbon Fiber Structural Battery Paves way for Light, Energy-Efficient Vehicles

World's strongest battery paves way for light, energy-efficient vehicles
Researchers at Chalmers University of Technology have succeeded in creating a battery made of carbon fiber composite that is as stiff as aluminum and energy-dense enough to be used commercially. When cars, planes, ships or computers are built from a material that functions as both a battery and a load-bearing structure, the weight and energy consumption are radically reduced. Credit: Chalmers University of Technology | Henrik Sandsjö

When cars, planes, ships or computers are built from a material that functions as both a battery and a load-bearing structure, the weight and energy consumption are radically reduced...

Read More

AI helps Distinguish Dark Matter from Cosmic Noise

An AI-powered tool can distinguish dark matter’s elusive effects from other cosmic phenomena, which could bring us closer to unlocking the secrets of dark matter.

Dark matter is the invisible force holding the universe together – or so we think. It makes up around 85% of all matter and around 27% of the universe’s contents, but since we can’t see it directly, we have to study its gravitational effects on galaxies and other cosmic structures. Despite decades of research, the true nature of dark matter remains one of science’s most elusive questions.

According to a leading theory, dark matter might be a type of particle that barely interacts with anything else, except through gravity...

Read More

Scientists Learn how to Drug Wily Class of Disease-Causing Enzymes

An illustration of a GTPase thethered to a cell.
A GTPase (center) tethered to the outside of a cell (bottom), with several drugs in the distance. Credit: Inmywork Studio

Drugs for the K-Ras oncogene inspire an approach for targeting the GTPases, a family of enzymes whose dysfunction can lead to Parkinson’s and many other diseases.

UCSF scientists have discovered how to target a class of molecular switches called GTPases that are involved in a myriad of diseases from Parkinson’s to cancer and have long been thought to be “undruggable.”

Because of their slippery exteriors, the GTPases have remained largely out of reach of modern drug discovery, with the exception of the notorious cancer-causing GTPase called K-Ras.

On a hunch, the team tested a dozen drugs that target K-Ras against a handful of GTPases they had mutated to mak...

Read More