ALMA tagged posts

ALMA and VLT find too many Massive Stars in a Starburst galaxies, near and far

This artist's impression shows a dusty galaxy in the distant Universe that is forming stars at a rate much higher than in our Milky Way. New ALMA observations have allowed scientists to lift the veil of dust and see what was previously inaccessible -- that such starburst galaxies have an excess of massive stars as compared to more peaceful galaxies. Credit: ESO/M. Kornmesser

This artist’s impression shows a dusty galaxy in the distant Universe that is forming stars at a rate much higher than in our Milky Way. New ALMA observations have allowed scientists to lift the veil of dust and see what was previously inaccessible — that such starburst galaxies have an excess of massive stars as compared to more peaceful galaxies. Credit: ESO/M. Kornmesser

Astronomers using ALMA and the VLT have discovered that both starburst galaxies in the early Universe and a star-forming region in a nearby galaxy contain a much higher proportion of massive stars than is found in more peaceful galaxies. These findings challenge current ideas about how galaxies evolved, changing our understanding of cosmic star-formation history and the build up of chemical elements.

 
Zhang and his...
Read More

Doubt Cast on New Theories of Star Formation

Stars over mountains

The birth of stars from dense clouds of gas and dust may be happening in a completely unexpected way in our own galaxy and elsewhere.

New findings reveal surprising distribution of star-forming cores outside of our galaxy. The birth of stars from dense clouds of gas and dust may be happening in a completely unexpected way in our own galaxy and beyond. This is according to an international team, including scientists from Cardiff University, who have found that long-held assumptions about the relationship between the mass of star-forming clouds of dust and gas and the eventual mass of the star itself may not be as straightforward as we think.

The underlying reasons as to why a star eventually grows to a specific mass has puzzled scientists for some time...

Read More

ALMA reveals Inner Web of Stellar Nursery

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth. It combines a mosaic of millimetre wavelength images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the IRAM 30-metre telescope, shown in red, with a more familiar infrared view from the HAWK-I instrument on ESO's Very Large Telescope, shown in blue. The group of bright blue-white stars at the left is the Trapezium Cluster -- made up of hot young stars that are only a few million years old. Credit: ESO/H. Drass/ALMA (ESO/NAOJ/NRAO)/A. Hacar

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth. It combines a mosaic of millimetre wavelength images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the IRAM 30-metre telescope, shown in red, with a more familiar infrared view from the HAWK-I instrument on ESO’s Very Large Telescope, shown in blue. The group of bright blue-white stars at the left is the Trapezium Cluster — made up of hot young stars that are only a few million years old. Credit: ESO/H. Drass/ALMA (ESO/NAOJ/NRAO)/A. Hacar

New data from the ALMA and other telescopes have been used to create this stunning image showing a web of filaments in the Orion Nebula...

Read More

Proxima Centauri’s no good, very bad day

An artist’s impression of a flare from Proxima Centauri, modeled after the loops of glowing hot gas seen in the largest solar flares. An artist’s impression of the exoplanet Proxima b is shown in the foreground. Proxima b orbits its star 20 times closer than the Earth orbits the Sun. A flare 10 times larger than a major solar flare would blast Proxima b with 4,000 times more radiation than the Earth gets from our Sun’s flares. Credit: Roberto Molar Candanosa / Carnegie Institution for Science, NASA/SDO, NASA/JPL.

An artist’s impression of a flare from Proxima Centauri, modeled after the loops of glowing hot gas seen in the largest solar flares. An artist’s impression of the exoplanet Proxima b is shown in the foreground. Proxima b orbits its star 20 times closer than the Earth orbits the Sun. A flare 10 times larger than a major solar flare would blast Proxima b with 4,000 times more radiation than the Earth gets from our Sun’s flares. Credit: Roberto Molar Candanosa / Carnegie Institution for Science, NASA/SDO, NASA/JPL.

Flare illuminates lack of a dust ring; puts habitability of Proxima b in question. Astronomers have detected a massive stellar flare – an energetic explosion of radiation – from the closest star to our own Sun, Proxima Centauri, which occurred last March...

Read More