Neptune tagged posts

New Images reveal what Neptune and Uranus really look like

New images reveal what Neptune and Uranus really look like
Voyager 2/ISS images of Uranus and Neptune released shortly after the Voyager 2 flybys in 1986 and 1989, respectively, compared with a reprocessing of the individual filter images in this study to determine the best estimate of the true colors of these planets. Credit: Patrick Irwin.

Neptune is fondly known for being a rich blue, and Uranus green—but a new study has revealed that the two ice giants are actually far closer in color than typically thought.

The correct shades of the planets have been confirmed with the help of research led by Professor Patrick Irwin from the University of Oxford, which has been published today in the Monthly Notices of the Royal Astronomical Society.

He and his team found that both worlds are in fact a similar shade of greenish blue, despite the c...

Read More

Neptune is Cooler than we thought: Study reveals unexpected Changes in Atmospheric Temperatures

Observed changes in Neptune’s thermal-infrared brightness, a measure of temperature in Neptune’s atmosphere. The plot shows the relative change in the thermal-infrared brightness from Neptune’s stratosphere with time for all existing images taken by ground-based telescopes. Brighter images are interpreted as warmer. Corresponding thermal-infrared images (top) at wavelengths of ~12 µm show Neptune’s appearance in 2006, 2009, 2018 (observed by the European Southern Observatory’s Very Large Telescope’s VISIR instrument), and 2020 (observed by Subaru’s COMICS instrument). The south pole appears to have become dramatically warmer in just the past few years. Credit: Michael Roman/NASA/JPL/Voyager-ISS/Justin Cowart

New research led by space scientists at the University of Leice...

Read More

Water-worlds are common: Exoplanets may contain vast amounts of water

Exoplanets similar to Earth. Credit: NASA

Exoplanets similar to Earth.
Credit: NASA

Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between 2 to 4X the size of Earth. It will have implications for the search of life in our Galaxy. The work is presented at the Goldschmidt conference in Boston.

The 1992 discovery of exoplanets orbiting other stars has sparked interest in understanding the composition of these planets to determine, among other goals, whether they are suitable for the development of life. Now a new evaluation of data from the exoplanet-hunting Kepler Space Telescope and the Gaia mission indicates that many of the known planets may contain as much as 50% water. This is much more than the Earth’s 0.02% (by weight) water content...

Read More

Supersharp Images from new VLT Adaptive Optics

The image of the planet Neptune on the left was obtained during the testing of the Narrow-Field adaptive optics mode of the MUSE instrument on ESO’s Very Large Telescope. The image on the right is a comparable image from the NASA/ESA Hubble Space Telescope. Note that the two images were not taken at the same time so do not show identical surface features.

ESO’s Very Large Telescope (VLT) has achieved first light with a new adaptive optics mode called laser tomography – and has captured remarkably sharp test images of the planet Neptune and other objects. The MUSE instrument working with the GALACSI adaptive optics module, can now use this new technique to correct for turbulence at different altitudes in the atmosphere...

Read More