Do more with one link - claim and personalize your FREE link today! Effortlessly schedule, video meet, message chat, network, share materials, e-sign, etc – all in one spot. Collaborate, Nurture connections, Improve client services, Expedite deal closures, and more. Join FREE!!
This image by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) shows different structural details of the Crab Nebula. The supernova remnant is comprised of several different components, including doubly ionized sulfur (represented in green), warm dust (magenta), and synchrotron emission (blue). Yellow-white mottled filaments within the Crab’s interior represent areas where dust and doubly ionized sulfur coincide. The observations were taken as part of General Observer program 1714. : NASA, ESA, CSA, STScI, T. Temim (Princeton University)
A team of scientists used NASA’s James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus...
Why is the warm gas-giant exoplanet WASP-107 b so puffy? Two independent teams of researchers have an answer.
Data collected using NASA’s James Webb Space Telescope, combined with prior observations from NASA’s Hubble Space Telescope, show surprisingly little methane (CH4) in the planet’s atmosphere, indicating that the interior of WASP-107 b must be significantly hotter and the core much more massive than previously estimated.
The unexpectedly high temperature is thought to be a result of tidal heating caused by the planet’s slightly non-circular orbit, and can explain how WASP-107 b can be so inflated without resorting to extreme theories of how it formed.
JWST-7329: a rare massive galaxy that formed very early in the Universe. This JWST NIRCAM image shows a red disk galaxy but with images alone it is hard to distinguish from other objects. Spectral analysis of its light with JWST revealed its anomalous nature – it formed around 13 billions years ago even though it contains ~4x more mass in stars than our Milky Way does today. Credit: James Webb Space Telescope
Our understanding of how galaxies form and the nature of dark matter could be completely upended after new observations of a stellar population bigger than the Milky Way from more than 11 billion years ago that should not exist.
A paper published today in Nature details findings using new data from the James Webb Space Telescope (JWST)...
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope exquisitely captures Uranus’s seasonal north polar cap and dim inner and outer rings. This Webb image also shows 9 of the planet’s 27 moons – clockwise starting at 2 o’clock, they are: Rosalind, Puck, Belinda, Desdemona, Cressida, Bianca, Portia, Juliet, and Perdita. NASA, ESA, CSA, STScI
The James Webb Space Telescope recently trained its sights on unusual and enigmatic Uranus, an ice giant that spins on its side. Webb captured this dynamic world with rings, moons, storms, and other atmospheric features—including a seasonal polar cap. The image expands upon a two-color version released earlier this year, adding additional wavelength coverage for a more detailed look.
Recent Comments