Quantum dots tagged posts

Arrays of Quantum Rods could Enhance TVs or Virtual Reality devices

A blue squiggle-like DNA graphic points down in the center emitting light downwards. Two red DNA graphics are pointed up beside it. A structured array composed of triangular rods lie flat on dark gray surface, while the top rows of the arrays contain pieces resembling red pills.

MIT engineers developed a new way to create these arrays, by scaffolding quantum rods onto patterned DNA. Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Flat screen TVs that incorporate quantum dots are now commercially available, but it has been more difficult to create arrays of their elongated cousins, quantum rods, for commercial devices. Quantum rods can control both the polarization and color of light, to generate 3D images for virtual reality devices.

Using scaffolds made of folded DNA, MIT engineers have come up with a new way to precisely assemble arrays of quantum rods...

Read More

New Quantum Dots study uncovers Implications for Biological Imaging

CdZnSe/CdZnS quantum dots (QDs) have a complex internal structure that extends the lifetime. (A) TEM analyses reveal a zinc selenide-rich core interior and a cadmium sulfide shell exterior. (B) Time resolved emission reveals lifetime tunability by simple alterations to the QD structure. The lifetimes can be 10-times greater compared with similar materials.

Researchers report the synthesis of semiconductor ‘giant’ core-shell quantum dots with record-breaking emissive lifetimes. In addition, the lifetimes can be tuned by making a simple alteration to the material’s internal structure.

A new study involving researchers at the University of Illinois Chicago achieved a milestone in the synthesis of multifunctional photonic nanomaterials.

The group, which included collaborators from Pr...

Read More

Quantum Dots form Ordered Material

Electron microscope images showing two of the ordered structures formed in the experiments. Atoms inside the quantum dots are resolved by the microscope and it can be seen that they are aligned throughout adjacent dots. A model of the device used for the measurement of the electronic properties is shown in the bottom right. The superlattice lies between two electrodes while an ionic gel on top (gate electrode) is used to accumulate carriers in the active material.
Electron microscope images showing two of the ordered structures formed in the experiments. Atoms inside the quantum dots are resolved by the microscope and it can be seen that they are aligned throughout adjacent dots. A model of the device used for the measurement of the electronic properties is shown in the bottom right. The superlattice lies between two electrodes while an ionic gel on top (gate electrode) is used to accumulate carriers in the active material. | Illustration Jacopo Pinna

Finding paves the way for new generation of opto-electronic applications. Quantum dots are clusters of some 1,000 atoms which act as one large ‘super-atom’. It is possible to accurately design the electronic properties of these dots just by changing their size...

Read More

Smart Lighting system based on Quantum Dots more accurately reproduces Daylight

 A system architecture and design procedure of multi-primary coloured lighting system with patterned QD-LEDs.

Researchers have designed smart, colour-controllable whitelight devices from quantum dots – tiny semiconductors just a few billionths of a metre in size – which are more efficient and have better colour saturation than standard LEDs, and can dynamically reproduce daylight conditions in a single light.

The researchers, from the University of Cambridge, designed the next-generation smart lighting system using a combination of nanotechnology, colour science, advanced computational methods, electronics and a unique fabrication process.

The team found that by using more than the three primary lighting colours used in typical LEDs, they were able to reproduce daylight more accu...

Read More