regolith tagged posts

Lunar Mission Data Analysis Finds Widespread Evidence of Ice Deposits

Illustration of permanently shadowed regions near the lunar south pole.
This illustration shows the distribution of permanently shadowed regions (in blue) on the Moon poleward of 80 degrees South latitude. They are superimposed on a digital elevation map of the lunar surface (grey) from the Lunar Orbiter Laser Altimeter instrument on board NASA’s Lunar Reconnaissance Orbiter spacecraft.
NASA/GSFC/Timothy P. McClanahan

Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought, according to a new analysis of data from NASA’s LRO (Lunar Reconnaissance Orbiter) mission. Ice would be a valuable resource for future lunar expeditions. Water could be used for radiation protection and supporting human explorers, or broken into its hydrogen and oxygen components to make rocket fuel, energy, and breathable air.

Prior studies fou...

Read More

Thirsty on the Moon? Just throw some Regolith in the Microwave

A crucible that could be used to extract water from Lunar regolith. Credit: Cole, et al

No matter where we go in the universe, we’re going to need water. Thus far, human missions to Earth orbit and the moon have taken water with them. But while that works for short missions, it isn’t practical in the long term. Water is heavy, and it would take far too much fuel to bring sufficient water to sustain long-term bases on the moon or Mars. So we’ll have to use the water we can extract locally.

Fortunately, water is a common molecule in the universe. Even the moon has plenty of water to sustain a lunar colony. The only real challenge is how to extract it. As a recent study published in Acta Astronautica shows, that might be as easy as popping things into a microwave oven.

Although wate...

Read More

Clover Growth in Mars-like Soils Boosted by Bacterial Symbiosis

Clover growth in Mars-like soils boosted by bacterial symbiosis
Observed growth differences between clover (Melilotus officinalis) inoculated with nodule forming bacteria Sinorhizobium meliloti (left) and a clover plant not inoculated when grown in Martian regolith. Credit: Harris et al., 2021, PLOS ONE, CC-BY 4.0 (creativecommons.org/licenses/by/4.0/)

Benefits of nitrogen-fixing bacteria could aid efforts towards farming soils on Mars. Clover plants grown in Mars-like soils experience significantly more growth when inoculated with symbiotic nitrogen-fixing bacteria than when left uninoculated. Franklin Harris of Colorado State University, U.S., and colleagues present these findings in the open-access journal PLOS ONE on September 29, 2021.

As Earth’s population grows, researchers are studying the possibility of farming Martian soils, or “regoli...

Read More

Possibly Active Tectonic System on the Moon

Infrared (upper left) and other images from NASA’s Lunar Reconnaissance Orbiter revealed strange bare spots where the Moon’s ubiquitous dust is missing. The spots suggest an active tectonic process. 

Researchers have discovered a system of ridges spread across the nearside of the Moon topped with freshly exposed boulders. The ridges could be evidence of active lunar tectonic processes, the researchers say, possibly the echo of a long-ago impact that nearly tore the Moon apart.

“There’s this assumption that the Moon is long dead, but we keep finding that that’s not the case,” said Peter Schultz, a professor in Brown University’s Department of Earth, Environmental and Planetary Sciences and co-author of the research, which is published in the journal Geology...

Read More