supermassive black hole tagged posts

Gravitational ‘Kick’ may explain the Strange Shape at the Center of Andromeda

Click to enlarge: Graphic showing the orbit of stars around a supermassive black hole before, left, and after, right, a gravitational “kick.” (Credit: Steven Burrows/JILA)

When two galaxies collide, the supermassive black holes at their cores release a devastating gravitational “kick,” similar to the recoil from a shotgun. New research led by CU Boulder suggests that this kick may be so powerful it can knock millions of stars into wonky orbits.

The research, published Oct. 29 in The Astrophysical Journal Letters, helps solve a decades-old mystery surrounding a strangely-shaped cluster of stars at the heart of the Andromeda Galaxy. It might also help researchers better understand the process of how galaxies grow by feeding on each other.

“When scientists first looked at Andromeda,...

Read More

First Detection of Light from behind a Black Hole

black hole
Credit: CC0 Public Domain

Watching X-rays flung out into the universe by the supermassive black hole at the center of a galaxy 800 million light-years away, Stanford University astrophysicist Dan Wilkins noticed an intriguing pattern. He observed a series of bright flares of X-rays—exciting, but not unprecedented—and then, the telescopes recorded something unexpected: additional flashes of X-rays that were smaller, later and of different “colors” than the bright flares.

According to theory, these luminous echoes were consistent with X-rays reflected from behind the black hole—but even a basic understanding of black holes tells us that is a strange place for light to come from.

“Any light that goes into that black hole doesn’t come out, so we shouldn’t be able to see anythin...

Read More

How a Supermassive Black Hole Originates

Study points to a seed black hole produced by a dark matter halo collapse. Supermassive black holes, or SMBHs, are black holes with masses that are several million to billion times the mass of our sun. The Milky Way hosts an SMBH with mass a few million times the solar mass. Surprisingly, astrophysical observations show that SMBHs already existed when the universe was very young. For example, a billion solar mass black holes are found when the universe was just 6% of its current age, 13.7 billion years. How do these SMBHs in the early universe originate?

A team led by a theoretical physicist at the University of California, Riverside, has come up with an explanation: a massive seed black hole that the collapse of a dark matter halo could produce.

Dark matter halo is the halo of ...

Read More

ALMA discovers Earliest Gigantic Black Hole Storm

figure: Artist’s impression of a galactic wind driven by a supermassive black hole located in the center of a galaxy
Artist’s impression of a galactic wind driven by a supermassive black hole located in the center of a galaxy. The intense energy emanating from the black hole creates a galaxy-scale flow of gas that blows away the interstellar matter that is the material for forming stars. Credit: ALMA (ESO/NAOJ/NRAO)

Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) discovered a titanic galactic wind driven by a supermassive black hole 13.1 billion years ago. This is the earliest example yet observed of such a wind to date and is a telltale sign that huge black holes have a profound effect on the growth of galaxies from the very early history of the universe.

At the center of many large galaxies hides a supermassive black hole that is millions to billions of times more mas...

Read More