supernovae tagged posts

Deep Learning Speeds up Galactic Calculations

Four square images showing dark backgrounds with stars and galaxies
Divide and conquer. The upper images show a wide area of a galaxy being simulated. The time resolution is very low, in which each “step” of the simulation is around 100,000 years. The lower images show the specific area affected by a supernova explosion and have a finer time resolution where each step is under 10,000 years. These regions are combined with the more general simulation to improve the overall accuracy and efficiency of the simulation. ©2023 Hirashima et al., NASA/JPL-Caltech/ESO/R. Hunt/Hubble/L. Calçada CC-BY-ND

A new way to simulate supernovae may help shed light on our cosmic origins. Supernovae, exploding stars, play a critical role in the formation and evolution of galaxies...

Read More

Using Supernovae to study Neutrinos’ Strange Properties

When supernovae explode, neutrinos from their core carry enormous amounts of energy in all directions.
Photo: Getty Images

New study offers hope to long-standing scientific problem. In a new study, researchers have taken an important step toward understanding how exploding stars can help reveal how neutrinos, mysterious subatomic particles, secretly interact with themselves.

One of the less well-understood elementary particles, neutrinos rarely interact with normal matter, and instead travel invisibly through it at almost the speed of light. These ghostly particles outnumber all the atoms in the universe and are always passing harmlessly through our bodies, but due to their low mass and lack of an electric charge they can be incredibly difficult to find and study.

But in a study p...

Read More

Study Predicts Black Hole Chirps occur in Two Universal Frequency Ranges

The universal sound of black holes
Ripples in the spacetime around a merging binary black-hole system from a numerical relativity simulation. Credit: Deborah Ferguson, Karan Jani, Deirdre Shoemaker, Pablo Laguna, Georgia Tech, MAYA Collaboration

They are mysterious, exciting and inescapable—black holes are some of the most exotic objects in the universe. With gravitational-wave detectors, it is possible to detect the chirp sound that two black holes produce when they merge, approximately 70 such chirps have been found so far.

A team of researchers at the Heidelberg Institute for Theoretical Studies (HITS) now predicts that in this “ocean of voices” chirps preferentially occur in two universal frequency ranges. The study has been published in The Astrophysical Journal Letters.

The discovery of gravitational waves...

Read More

Quasar ‘Clocks’ show the Universe was Five Times Slower Soon after the Big Bang

Scientists have for the first time observed the early universe running in extreme slow motion, unlocking one of the mysteries of Einstein’s expanding universe. The research is published in Nature Astronomy.

Einstein’s general theory of relativity means that we should observe the distant—and hence ancient—universe running much slower than the present day. However, peering back that far in time has proven elusive. Scientists have now cracked that mystery by using quasars as “clocks.”

“Looking back to a time when the universe was just over a billion years old, we see time appearing to flow five times slower,” said lead author of the study, Professor Geraint Lewis from the School of Physics and Sydney Institute for Astronomy at the University of Sydney.

“If you were there, in...

Read More